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The mathematical theory is developed for heat transfer in the cells of DTA instruments with 
no temperature gradient. Equations are derived for the various portions of the differential curve. 
The concepts of real and hypothetical base lines are introduced and rules are tbrmutated for 
plotting them. Three methods are proposed for processing the curves, with and without the 
introduction of base lines. The physical meanings of the geometrical elements of the thermal 
curves and their relationship with the experimentally determined thermal quantities are 
elucidated. Equations in differential and integral forms are derived for the base line of the cell 
and the base line of the reaction. 

One-cell DTA is performed by placing the working thermocouple into the sample 
and the reference thermocouple on the wall of the heater turned towards the 
sample. The advantage of this variation of the method lies in its simplicity: there is 
no need for a reference cell or for a reference material; also, the mathematical 
theory of the sensor is well-defined and expressive, since no parameters of the 
reference material or of the reference cell figure in it. Some attempts to utilize one- 
cell DTA have previously been described [1,2]; however, only DTA with a reference 
cell is in practical use at this stage. Historically, this may be explained by the fact 
that, when DTA first developed, researches did not dispose of satisfactorily 
accurate apparatus, and the use of the reference cells allowed an increase in the 
stability of the base line, without the inclusion of special control devices into the 
apparatus design. At present, however, with electronic temperature programmers 
and potentiometers, the application of reference standards has become superfluous 
in many cases, particularly when reactions are being studied that do not need a high 
sensitivity of the differential record. For this reason, the development of the 
theoretical and practical aspects of one-cell DTA has become most timely. 

Figure 1 shows thermal curves recorded in one-cell DTA (a) and in DTA with a 
reference cell (b), in the coordinates temperature difference vs. time. These thermal 
curves do not differ as concerns the size and shape of the peak, but they do differ as 
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782 SHISHK1N: THEORY OF ONE-CELL DTA 

concerns the distance of the thermal curve (and the peak) from the zero line. In (a), 
the total temperature jump on the thermal barrier of the cell, responsible for heat 
transfer to the sample, is visible, while in (b), only that part of the jump is shown 
which corresponds to the difference between the total jump on the thermal barriers 

ATB1 -ATB2 ATB1 - ATBh 
[ 1 " 

P 

Fig. I Temperature diagram of the thermal barrier of the cell for one-cell DTA (a) and DTA with 
reference cell (b) 

of the sample cell and the reference cell. According to [3], the equation of the 
differential thermal curve in DTA with a reference cell is 

A T  = q~2r2-c~hzl + ATp  

while the corresponding equation in one-cell DTA is 

A T =  q~hrl + A T  p 

Thus, the difference between the two methods is solely the presence of the term 
tPzr 1, influencing the position of the base line of the instrument. 

Let us consider the relationship between the geometric elements of the thermal 
curve and the thermal quantities determined experimentally. 

The geometric elements can be divided into basic and derived elements. Basic 
elements are sections of two types: those parallel to the time axis (pull of the record 
chart), their dimension being time, and those perpendicular to the time axis, their 
dimension being temperature. Formulae exist for the transition from the linear 
dimensions of the sections on the thermal curve (in cm) to dimensions in ~ and 
seconds: 

A T  = l, a 

A t  = 12 b 

where l is the length of the section, in cm, a is the sensitivity of the differential 
record, in degree/cm, and b is the reciprocal pulling velocity, in s/cm. 
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The derived geometric elements of the thermal curves are areas: A = AT. At, 
degree.s, and angles, measured by the ratio of sections having different 

AT 
dimensions: tan ~t = ~-~-, degree/s. 

In calorimetry, twoconversion factors are used to transform the geometric 
elements of the thermal curve into thermal quantities: the heat transfer coefficient 
of the working space of the cell, K (J/s degree), and the heat capacity of the sample, 

Table 1 Caloric values (Joule, Watt) expressed through the geometrical elements ofthe thermal curves 
determined experimentally 

Fundamental geometrical Derived geometrical 
Conversion elements elements 

factors A T 

AT,  ~ At,  s .4, ~ s tgct = ~ t  ~ 

K, W/~ KA T, W - -  KA,  .t - -  

d A T  
C J/~ CA T, J - -  - -  C , W 

dt 

Combinations having no physical sense are marked in the table by dashes. 

C (J/degree). For instruments with insulated sample holders [4] (the theory exposed 
is best suited for such cases), the thermal capacity C is the total thermal capacity of 
the sample holder and the sample. The thermal quantities containing various 
combinations of the geometric elements and the multiplication factors C and K are 
listed in Table 1. 

The Table evidences that the thermal quantities, heat and heat flow, have two 
forms of expression: with the heat capacity of the sample figuring in one of them, 
and the heat transfer coefficient of the cell figuring in the other. The quantities with 
the coefficient K express heat transferred to the sample, while those with the 
coefficient C express heat absorbed by the sample, or more accurately, that part of 
the absorbed heat serving to change the temperature of the sample. The heat 
quantity absorbed or evolved by the sample without changing its temperature after 
the end of the reaction is denoted by the special symbol AH and is termed the latent 
heat of reaction. The thermal curves in Fig. 1 allow the determination of all three 
types of heat: the total heat transferred to the sample (Q), the heat increasing the 
temperature of the sample (CdT) and the latent heat (AH); the latter is found as the 
difference between the first two types of heat. 

Let us find the mathematical expression for the differential curve of one-cell 
DTA. For convenience of analysis, we shall divide the curve into four portions: 
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784 SHISHKIN: THEORY OF ONE-CELL DTA 

1. the]nitial transitional portion corresponding to the transition to the steady-state 
heating regime; 2. the steady-state heating regime portion (we shall call this the base 
line of the cell before the reaction); 3. the differential curve corresponding to the 
thermal transformation (reaction) proceeding in the sample; 4. the steady-state 
heating regime portion after the reaction (the base line of the cell after the reaction). 

For a cell without a temperature gradient, the Newton equation is valid: 

dQ = otS( T 3 -  T])dt = - KA T dt (1) 

where dQ is the heat transferred to the sample during time dr; ct is the heat loss 
coefficient; S is the surface area of the sample holder; T3 is the temperature of the 
heater wall; T, is the temperature of the sample; A Tis the differential temperature; 
and K is the heat transfer coefficient. 

The heat transferred to the sample is absorbed by it, raising its temperature by 
dTl: 

dQ = CdT~ (2) 

By combining Eqs (1) and (2), we obtain the differential equation 

d TL T, T 3 
+ - 0  

dt rl zl (3) 

or, written in another form 

A T  = - ~ , ~ 1  

C 
where(/) 1 is the heating rate of the sample and r l = ~ is the time constant of the cell. 

The value of A T is equal to the distance of the differential curve from the zero 
line; the position of the zero line is determined by recording with a short-circuited 
amplifier,' thereby simulating the equality of temperature of the hot junctions of the 
differential thermocouple: A T = TI - T 3 = 0. This is the equation of the zero line, 
from which the differential temperature is counted. 

Equation (3) can be solved if it is assumed that ~ = const. For this case, the 
solution is the following function: 

t 

f e : ,~ -[d t  
, - ' , ,  ., _ d T 

T, = T 3 +  ( T o , -  To3)e *, - e *-~ (4) 

tO 

For a linear temperature increase of the heater wall: 

T 3 = To3 + q~0(t - to) 
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where ~o is the actual constant heating rate; assuming that, at the moment when 

heating is started (t = to), To~ = To3, Eq. (4) yields 

t -- tO 

AT=-roq~o(I-e -~-o) (5) 

Equation (5) is the integral form of Eq. (3); it describes the initial transitional 
section of the differential curve and the steady-state section in the interval 
t>~(4. . .5)z o, t = ts, in which it may be represented in its limiting form 

A T = - %4% , (5a) 

Although Eqs (3a) and (5a) are identical in form, Eq. (5a) is integral and correct 
only for the steady-state section of  the curve and only for r o = const. ; in contrast, 
Eq. (3a) is differential and correct for any section of  the differential curve and for 
any value o f r l .  The heating rate 4, involved in the equation is the heating rate of the 
sample and not the block; also, r :f r o, if v 4: const. 

From the most general integral equations of  the differential curves for one-cell 
DTA and DTA with a reference cell 

AT= T , - T  3 = Iq~l d t -  1 4~odt (6) 

A T =  T , - T  2 = ~q~ ld t -  ~ 4~2dt (7) 

we can obtain the expression for the slope of the differential curve to the zero line: 

d A T  

dt  - q~ - cb~ 

d ~ r  (8) 

dt - q~l-c0z 

indicating that the slope of  the tangent to the DTA curve at any point is equal to the 
difference of the heating rates of the hot junctions of  the differential thermocouple 
at that point of  the curve. 

Let us now consider the portion of  the curve in the range of  the thermal 
transformation. Let us first investigate an endothermic reaction (Fig. 2). 

As the reaction proceeds, the heating rate of the sample decelerates, and becomes 
equal to zero or even assumes a negative value, due to the reaction consuming the 
heat transferred--partially, completely or in excess of  this. According to the 
definition of the latent heat of reaction as the difference between the total heat 
transferred and the heat consumed for raising the temperature of  the sample, for the 
rate of  heat absorption by the sample we can write 

d A H  _ K ( T 3 -  T 1 ) -  c d T 1  
dt  dt  = - K A  T -  C ~  x (9) 
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786 SHISHK1N: THEORY OF ONE-CELL DTA 

Replacing the heating rate of the sample in Eq. (9) by the experimentally determined 
values by means of Eq. (8), we obtain the fundamental equation of one-cell DTA: 

- K A T + C \ ~ -  + 4  0 (10) 

In the integral form, for the current heat of reaction, the equation assumes the form 

- A H  = K i ATd t+( ' (AT-ATs )+Cebo( t - t~ )  ( l l )  
Is 

and for the total heat of  reaction 

le 

- A H  t = K S dTdt+C(ATe-AT~)+CdPo( te- t s )  ( l la )  
ts 

where k and (2 are the mean values of K and C in the temperature interval studied; 
A T s is the value of A T at the start of  the reaction (t = ts); A T e is the value of A T at 
the end of  the reaction. 

Hence, to find the heat of reaction from the thermal curve of one-cell DTA, it is 
necessary to find the area enclosed between the zero line and the differential curve, 

C ~i F 

Fig. 2 Temperature diagram of the cell of one-cell DTA with the hypothetic and the real base line 
(explanation in the text) 
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and add to it the increase of the differential temperature A T - A T s  = A T  A 

multiplied by (7, and the term (7~bo(t - t~). The first two terms are negative; the last is 
positive. The sum of the last two terms in Eq. (l 1) is equal to the temperature rise of 
the sample during the reaction, multiplied by (7, since, according to the definition of 
ATA: t 

ATA = i ~)1 d t - ~ o ( t - t ~ )  
t~ 

Calculations utilizing Eq. (11) require the measurement of one area and two 
distances (ATA and At). It is also necessary to know the value ofq~ 0, which is not 
always possible. Further, accurate determination of the end-point of the reaction in 
the curve is needed to find A H  t. Hence, Eq. (11) is inconvenient for calculations. In 
principle, two other methods exist for processing the thermal curves of one-cell 
DTA; in these methods, base lines are introduced and the heat of reaction is 
calculated from the area enclosed between the differential curve and the base lines. 
As will be demonstrated later, various base lines are possible; one will be termed the 
real base line, the other the hypothetical base line of the reaction. 

When the transformation in the sample starts, the base line of the cell disappears; 
it is replaced by the differential curve of the reaction, reflecting both the thermal 
properties of the reaction and the thermophysical parameters of the cell. However, 
it can be reproduced by calculation; for this purpose we have to introduce into Eq. 
(3a) the real heating rate of the sample during the reaction and the theoretical 
(calculated) value of the time constant of the cell. The value ~/,~ may be found by 
means of Eq. (8), and the value ~ from the assumed (7 and /~  values of the cell 
during the reaction. The area enclosed between the zero line and the base line 
constructed in this manner will be proportional--as before the reaction--to the 
heat consumed for heating the sample: 

KA~ = ~ KA Tn~ dt = - ~ K ~  t dt = - (76T~ (12) 

where 6T, is the temperature rise of the sample during the reaction. In Fig. 2 the real 
base line is represented by the curve K M" e.p. 

The equation for the second method is obtained by integrating Eq. (9) and 
utilizing Eq. (12)" 

i ' - A N =  F, A T d t + C ~ d t =  K A - K A s  (13) 
ts t~ 

and in the differential form: 

d A H  
- ~ A T - R A T B  s 

dt 

The third calculation method coincides with the method used in DTA with a 
reference cell [3]. 
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788 SHISHKIN: THEORY OF ONE-CELL DTA 

The differential temperature in the reaction range is represented as the sum of 
two terms: 

AT -= ATBh+ ATp = -4~hZ, + ATp (14) 

where 4~ n is the hypothetical heating rate of the sample, equal by definition to the 
rate at which the sample would be heated in the absence of heat absorption (heat 
evolution), but maintaining the value ~1 corresponding to the real conditions of the 
proceeding reaction, lfz~ = t o = const, during the reaction, the sample would heat 
up at the same rate as before the reaction, i.e. 4J1 = q~o = const., and the 
hypothetical base line of the reaction is then the contin uation of the base line of the 
cell: 

A TBh = -- 4~do 

Ifz~ changes during the reaction, then q~h4~o # const, and, as will be demonstrated 
later, these base line A Tsh is curved: with increasing ~ ,  the base line moves away 
from the zero line; with decreasing r~ it comes closer to the zero line. Introducing 

Eq. (14) into Eq. (13), we obtain 

- A H =  KAT•ndt+ f K A T p d t -  I KATnsdt= 
,~ ,~ ,s (15) 

= KAH+ KAp-lg2A, 

where An is the area enclosed between the zero line and the hypothetical base line; 
Ap is the area enclosed between the differential curve and the hypothetical base line; 
and A s is the area enclosed between the zero line and the real base line (cf. Fig. 2). 

We shall demonstrate that the area between the two base lines (shaded in the 
Figure) may be expressed by the height of the peak, i.e. the additional temperature 
A Tp. This follows from the equation 

A n - A s  = A ,  = IATBhdt-- ~ATssd, = ~Zlqbhdt-- ~Zl4~,dt = 

(cf. also the diagram below in Fig. 2). 
By substituting Eq. (16) into Eq. (15), we obtain 

and in the differential form 

dAH 

dt 

Since A Tp = A T -  A TBn, we have 

dAH 

dt 

- A H  = K,.Ap+CATp 

- RATr+O dAT,  
N 

- g A G +  C ( d A T  _ d A T~h~ = RATp+ C(tg 5 - -  tg 
\ d t  dt J 

(16) 

(16a) 

(17) 

(17a) 
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SHISHKIN: THEORY OF ONE-CELL DTA 789 

where ~ is the angle between the zero line and the tangent to the differential line at 
the current point, and fl is the angle between the zero line and the tangent to the base 
line at the point above the current point in the differential curve. 

From Eq. (16) and Fig. 2 it is seen that an express correspondence exists between 
the area enclosed between the two base lines and the additional temperature. With 
increasing A Tp, the area A H - A s = A B increases proportionally; at the point where 
A Tp is maximum (at the top of  the peak) the difference An- -  As is also maximum, 
while to the right of this point the difference begins to decrease, since the increase in 
the area Ak changes sign after this point. 

Let us now consider in more detail how the real and the hypothetical base lines 
are drawn. We shall start from the assumption that the function z I = F(t) is known. 

To draw ATns = -cb~z~, we can find a number of points in the interval of the  
reaction in process, and then connect them by a continuous curve. As base points 
we may choose the starting point of the reaction, the top or the base line above the 

d A T  
inflexion of  the differential curve where q~ = rain, d ~  = q ~ -  q~0 = max and 

A TBs = max, the point of  intersection of the base lines, which as pointed out above, 
lies above the top of  the peak, and the end-point of the reaction, defined as the point 
where the exponential portion of  the differential curve begins (visually observed as 
an inflexion point). At this point, the real base line ends and the base line of the cell 
recorded by the instrument starts. 

Let us now demonstrate that the area enclosed between the differential curve and 
the real base line is equal to the area enclosed between the differential curve and the 
hypothetical base line. For this purpose the correctness of the equality 

AB = A'n+ A,  (18) 

must be demonstrated, i.e. the equality of  the areas to the right and to the left of the 
point of  intersection of  the base lines (Fig. 2). 

According to Eq. (16), the area A n to the left of the point M' is equal to z~AT M. 

We shall demonstrate that it is also equal to the sum of the areas A~ and A,, lying to 
the right of the point M'. In fact, after the end of  the reaction (denoted e.p.), all heat 
transferred to the sample, expressed by the sum KAs + KA, ,  will be used to heat the 
sample; its temperature increase is 

ATs = i q~h a t +  i d A T ,  
le te 

and consequently 

Hence 

g a s  + KA,  = C S ~h dt + CTe. p 
te 

A,  = f lA  Te.v. 
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According to Eq. (16), the area Ak is equal to the increase in A T v on passing from 
the point p to the point e.p., multiplied by z~ : 

A , +  A'B = fI(ATe.p.+ ATpI~'v') = f IATM 

From the above proof of the equivalent of the areas enclosed by the two base line 
types, it follows that to determine the total heat of reaction by the third method it is 
not necessary to know the position of the end-point of the reaction in the 
differential curve. This is the essential advantage of this mode of calculation as 
compared to the first and second modes, there a knowledge of the e.p. position is 
required. 

To draw the hypothctic base line correctly, it is preferable to have the equation of 
this line in the integral form yielding A TBhvs. time. To derive this equation, let us 
differentiate the equation of the hypothetical base line A TBh (cf. Eq. (14)): 

ATBh = - ~hzl - r (19) 

On the other hand, according to Eq. (8): 

T'Bh = r ~0 (20) 

Combining Eqs (19) and (20), we have 

1 ~ o  q~, _ "c_~'1 

zl q~h'c i q~h zl 

oF 
dt + r _ 

d ln~hz j (21) 
z I ATBh 

Let us integrate Eq. (21) from ts to t: 

t t 

~0 = In (A Tab), ) 
G ts  

where (A Tnh)~ , and (A Tah)t are the values of the base line at the lower and upper 
limits. 

It follows from Eq. (22) that the form of the function A Tnh is unequivocally 
defined by the form of the function Zl(t ). Therefore, for A TBh we may accept the 
same form of functional dependence as for z~(t) and, by varying the coefficients in 
this relationship, we can arrive at the coincidence of the left and right sides of Eq. 
(22). This relationship is then introduced into the diagram. It is serviceable to 
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construct the base line by means of Eq. (22) in the interval from the start of the 
reaction to the end-point of the reaction, since, from the end-point on, TBh no longer 
depends on the reaction, but-only on temperature. The portion from te to t can be 
obtained by extrapolation of the base line of the cell after the experiment to its 
intersection with the perpendicular line to the zero line, drawn from the end-point 
of the reaction in the differential curve. The distance MN' in Fig. 2 is equal to the 
value of A Tnh at the upper limit of integration, and the distance CK to its value at 
the lower limit of integration. In the example illustrated by Fig. 2, it was assumed 
that ~ increases in the course of the reaction, for instance by virtue of the increase in 
C/the heat capacity of the reaction products being higher than that of the initial 
substances. As a result, the base line descends till the end-point of the reaction, and 
subsequently continues at lower level at the level of the base line of the cell after the 
reaction. This level gradually increases with increasing temperature, owing to a 
more rapid increase in ~ as compared to C. 

Exothermic reactions 

Latent heat evolved during exothermic reactions causes additional heating of the 
sample, and the amount of transferred heat decreases if ~o ~> 0 (heating regime), or 
the amount of eliminated heat increases if ~Po ~<0 (cooling regime). Hence, the heat 

L T:, T 3 ~)%:0 

A ! 

2)%>0 

3) ~o<0 

Fig. 3 Temperature diagram of the cell for exothermic reactions and different heating (cooling) regimes 
of the sample 
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ofexothermic reactions can be defined as follows for its detection by DTA: the heat 
of an exothermic reaction is the heat causing the sample temperature to increase 
above the temperature set by the heating (cooling) program, plus the amount of 
heat to be transferred to the sample to decrease (the amount to be eliminated to 
increase) as a result of additional heating-up of the sample. In mathematical form: 

t 

- A H  = r i ~, d t -  f 4)ndt+ K A - ( ~ 2 A - K I  AT,  dt) = 
I$  Is; 

, (23) 
= C.AT,+I~SzlTpdt 

Figure 3 presents various heating programs of the sample, with superimposed 
exothermic effects: 1. 4~ o = 0; 2. 4~o>0; 3. 4~o<0; in all cases O1>4~ o ~ 4~,, 
~Tp>0. 

Equation (23) demonstrates that exothermic reactions are described by the same 
formula as endothermic reactions, independently of the heating regime; the only 
difference is in the sign of the values involved, these being the opposite of those for 
endothermic reactions. The two terms on the right side of Eq. (23) are positive 
(A Tp > 0), and hence, when numerical values are applied, the heat of the exothermic 
reaction will be negative. 

References  

1 L.G. Berg, Introduction into thermography (in 
Russian), Nauka, Moscow, 1969, p, 238. 

2 E, P. Partridge, V. Hicks and G. W. Smith, J. 
Am. Chem. Soc., 63 (1941) 454. 

3 Yu. L. Shishkin, J. Thermal Anal., 27 (1983) 
113. 

4 Yu L. Shishkin, J. Thermal Anal., 29 (1984) 
105. 

Lusammenfassung-- Eine mathematische Theorie fiir den Wiirmeiibergang in Zellen von DTA-Ger/iten 
ohne Temperaturgradient wird entwickelt. Fiir die einzelnen Abschnitte der differentiellen Kurve 
werden Gleichungen abgeleitet. Das Konzept der reelten und hypothetischen Grundlinien wird 
eingefiihrt und Regeln fiir deren Konstruktion werden aufgestellt. Drei Methoden zur Darstellung der 
Kurven mit und ohne Einfiihrung der Grundlinien werden vorgeschlagen. Die physikalische Bedeutung 
der geometrischen Elemente der thermischen Kurven und deren Iteziehung zu den experimente~l 
bestimmten thermischen Gr6gen werden klargestellt. Fiir die Grundlinie der Zelle und fiir die der 
Reaktion werden Gleichungen in differentieller und integraler Form abgeleitet. 

Pe31oMe - -  Id3.aaraeTc~ MaxeMaT14qecraa Teop14~ TerLqonepeaaqH a A,~efiKe np~6opa }ITA, a KOTOpO~ 
OTCyTCTBylOT TeMnepaTypHble rpa~114enTbl. I-Ip14BOAnTC~ ypaaHe1414~ ~.Jl~ pa3.q14qHblX yqacTKOB 
lladpdpepeHllHa~lbflo~ KprlBOfi. B ao~axca nOH~ITH~I peaJlbHOH I4 r14noTeT14~ecrofi 6a3oablx 314HX~ 14 
qbopMy~pytOTCS npas14aa nx 14aHeccHH~L [Ipe~aaratoTca Tptl cnoco6a 06cqeTa KpHBblX - -  C 
naHecenHeM 6a3OBblX JI14HHH 14 6e3 HRFIr 6a3OBblX 21HH14H, B~aacngeTe~ dpH3HqecK14fi CMb~CJI 

FeOMeTp14qecK14X 321eMeHTOB TepMoFpaMMbl  14 CBJI3b noc~le~HnX c 143Mepl~leMblMl~ B OF/bITe K a ~ o p ~ q e c -  

saM14 aeanaanaMn. BbIBO/tSTC~! ypasnenna 6a3oaofi aa14a14 sqe~g14 n 6a3oaofi hanna peagttu14 s 
~14d?qbepeHuaa~bHofi 14 14HTerpam, Ho~ ~opMax, 
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